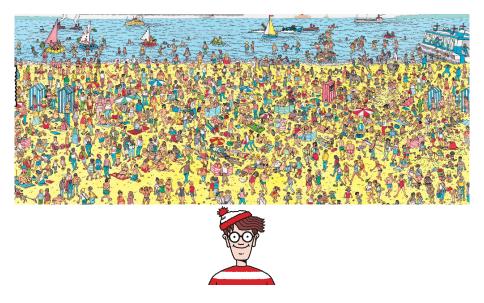

A Topological Categorization of Agents for the Definition of Attack States in Multi-Agent Systems


Katia Santacà¹, Matteo Cristani¹, **Marco Rocchetto**², Luca Viganò³ ¹ Università di Verona, Italy ² University of Luxembourg, Luxembourg ³ King's College London, UK

EUMAS, 16/12/2016

- Where is Wally?
- Who is Wally?

Image: A match a ma

- 34

*ロト *檀ト *注ト *注ト

- Where is the malicious agent?
- What is a malicious agent?

- Where is the malicious agent?
- What is a malicious agent?

Research questions

- How can we define an agent in a MAS?
- How many different type of agents can we define in a MAS?

Background: Multiple-channel logic (MCL)

MCL is a labeled, modal logic framework

• Propositional calculus to express what agents share (the logical representation of an assertion)

$$\varphi := A \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi$$

• B (belief), to assert that an agent believes that a proposition is true,

*T*_□ and *T*_◊ If a proposition is *asserted* by an agent respectively in every **channel** or at least one channel.

$$\mu := \mathbf{B}[\lambda:\varphi] \mid \mathbf{T}_{\Box}[\lambda:\varphi] \mid \mathbf{T}_{\Diamond}[\lambda:\varphi] \mid \sim \mu$$

Example

- $\varphi = Valencia$ is in Spain
- $B[Wally : \varphi]$, Wally believes that Valencia is in Spain
- $\bullet\ T_{\diamondsuit}[\mbox{Wally}: \varphi],$ Wally says on Facebook that Valencia is in Spain
- T_{\Box} [Wally : φ], Wally says on Facebook, Twitter, . . . that Valencia is in Spain

Reasoning on agents

The three main elements to reason on agents in MCL are:

- Announcements $\mathbb{A}_{\lambda} = \{\varphi. T_{\Diamond}[\lambda : \varphi]\}$ one or more channels.
- Beliefs $\mathbb{B}_{\lambda} = \{\varphi.B[\lambda : \varphi]\}$ is the set of the formulae believed to be true by an agent
- Facts \mathbb{F} is the set of axiomatic formulae.

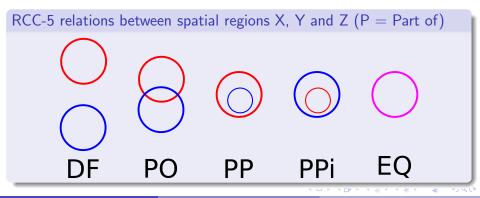
Categorization of Agents $(\mathbb{A}_{\lambda}, \mathbb{B}_{\lambda}, \mathbb{F}$ Permutations)

$(\mathbb{A}_{\lambda}, \mathbb{B}_{\lambda})$

- The relation between Beliefs and announcements of an agent λ .
- Collaboration as a quantity of data announced.
- E.g. if an agent asserts everything he Believes, he is collaborative

$(\mathbb{B}_{\lambda},\mathbb{F})$

- The relation between Beliefs of an agent λ and true facts.
- Competence of λ as the quality of data an agent produces.
- E.g. if everything an agent Believes is also true, he is competent

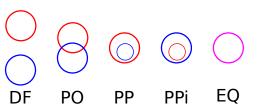

$(\mathbb{A}_{\lambda},\mathbb{F})$

- The relation between announcements of the agent λ and true facts.
- Defines the level of *Honesty* of λ .

E.g. If everything an agent shares on a channel is true, then he is honest.

RCC and Definition of agent

- How many different relations can we define over the three pair of sets?
- If we consider each set as a spacial region we can use RCC-5 (Region Connection Calculus)
- RCC is an axiomatization of certain spacial concept and relation in first order logic



RCC and Definition of agent

•		
Ager	nt ta	gging

$(\mathbb{A}_{\lambda},\mathbb{B}_{\lambda})$	$(\mathbb{B}_{\lambda},\mathbb{F})$	$(\mathbb{A}_{\lambda},\mathbb{F})$
$DR(\mathbb{A}_{\lambda},\mathbb{B}_{\lambda})$ Braggart	$\mathit{DR}(\mathbb{B}_{\lambda},\mathbb{F})$ Ignorant	$DR(\mathbb{A}_{\lambda},\mathbb{F})$ False
$\mathit{PO}(\mathbb{A}_\lambda,\mathbb{B}_\lambda)$ Saboteur	$\mathit{PO}(\mathbb{B}_{\lambda},\mathbb{F})$ Incompetent	$PO(\mathbb{A}_{\lambda},\mathbb{F})$ Incorrect
$PP(\mathbb{A}_{\lambda},\mathbb{B}_{\lambda})$ Sincere	$\mathit{PP}(\mathbb{B}_{\lambda},\mathbb{F})$ Competent	$PP(\mathbb{A}_{\lambda},\mathbb{F})$ Honest
$PPi(\mathbb{A}_{\lambda}, \mathbb{B}_{\lambda})$ Collaborative	$PPi(\mathbb{B}_{\lambda},\mathbb{F})$ Omniscient	$PPi(\mathbb{A}_{\lambda},\mathbb{F})$ Oracle
$\mathit{EQ}(\mathbb{A}_{\lambda},\mathbb{B}_{\lambda})$ Fair	$EQ(\mathbb{B}_{\lambda},\mathbb{F})$ Wise	$\mathit{EQ}(\mathbb{A}_{\lambda},\mathbb{F})$ Right

æ

イロト イ団ト イヨト イヨト

RCC and Definition of agent

RCC-5 relations between spatial regions X, Y and Z (P = Part of)

Name	Notation	Definition
Equal to	EQ(X, Y)	$P(X,Y) \wedge P(Y,X)$
DiscRete from	DR(X, Y)	$\neg O(X, Y)$
Partial-Overlap	PO(X, Y)	$O(X,Y) \land \neg P(X,Y) \land \neg P(Y,X)$
Proper-part-of	PP(X, Y)	$P(X,Y) \land \neg P(Y,X)$
Proper-part-of-inverse	PPi(X, Y)	$P(Y,X) \land \neg P(X,Y)$

Type of agent: defined by a tuple

 $\textit{Agent} = \langle \textit{RCC5}_1(\mathbb{A}_{\lambda}, \mathbb{B}_{\lambda}), \textit{RCC5}_2(\mathbb{B}_{\lambda}, \mathbb{F}), \textit{RCC5}_3(\mathbb{F}, \mathbb{A}_{\lambda}) \rangle$

where $RCC5_1$, $RCC5_2$ and $RCC5_3$ are relations in RCC-5.

 $E.g., Agent_1 = \langle EQ(\mathbb{A}_{\lambda}, \mathbb{B}_{\lambda}), EQ(\mathbb{B}_{\lambda}, \mathbb{F}), EQ(\mathbb{F}, \mathbb{A}_{\lambda}) \rangle$

How many agents?

Research questions

- ✓ How can we define an agent in a MAS?
- How many different type of agents can we define in a MAS?
 - Hence, applying RCC over A_λ, B_λ, F, we obtain a definite number of different types of agents.
 - Some combinations of *RCC5*₁, *RCC5*₂ and *RCC5*₃ are topologically incorrect (e.g., *A*_λ = B_λ, *A*_λ = F, B_λ ≠ F)

	Theoretical	Correct
RCC-3	$3^3 = 27$	15
RCC-5	$5^3 = 125$	54
RCC-8	$8^3 = 512$	193

Figure: Number of agents with respect to different RCC

We identify a theoretical limit to the maximum number of different types of agents in a MAS (defined using MCL)

How many agents?

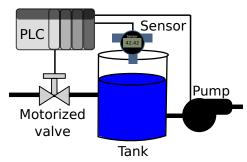
Research questions

- ✓ How can we define an agent in a MAS?
- ✓ How many different type of agents can we define in a MAS?
 - Hence, applying RCC over A_λ, B_λ, F, we obtain a definite number of different types of agents.
 - Some combinations of *RCC5*₁, *RCC5*₂ and *RCC5*₃ are topologically incorrect (e.g., *A*_λ = B_λ, *A*_λ = F, B_λ ≠ F)

	Theoretical	Correct
RCC-3	$3^3 = 27$	15
RCC-5	$5^3 = 125$	54
RCC-8	$8^3 = 512$	193

Figure: Number of agents with respect to different RCC

We identify a theoretical limit to the maximum number of different types of agents in a MAS (defined using MCL)


Marvin Minsky - MIT Media Lab 30th anniversary

イロト イヨト イヨト

CPS

- Systems that consist of networked embedded systems, which are used to sense, actuate, and control physical processes
- Examples: industrial water treatment facilities, electrical power plants, public transportation infrastructure, or even smart cars.

Case study

I apply our topological categorization to define attack states for a MAS that describes a general CPS. I can summarize our mapping as follows:

- \mathbb{A}_{λ} defines the values communicated by the agent λ .
- \mathbb{B}_{λ} defines the computational results of the agent λ .
- $\mathbb F$ defines the environmental values, i.e., the real values of the system.

Figure: Representation of the test case

Table: Example of attack states for the water level sensor

			honesty
State of the sensor	(\mathbb{A},\mathbb{B})	(\mathbb{B},\mathbb{F})	(\mathbb{A},\mathbb{F})
optimal	EQ	EQ	EQ
sensor compromised	EQ	DR	DR
communication compromised	DR	EQ	DR
fully compromised	DR	DR	DR

One of the most difficult task is to define all the different attack state of a System.

Summary

Categorization of Agents in MCL

- We defined a topological categorization of agents in MAS, obtaining 50 new rules in the MCL framework.
- We identified a theoretical limit to the maximum number of different types of agents in a MAS (defined using MCL).
- A case study on the security of CPS and, more generally, MAS.

Thank you. Any questions?